Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 28: e20190145, 2020. graf
Article in English | LILACS | ID: biblio-1056576

ABSTRACT

Abstract Ultrasonic wave technology is widely used during dental treatments. We previously demonstrated that this method protects the gingival tissue. However, the physiological change on the gingival microvasculature caused by this method remains unclear. Objective The aim of this study was to investigate the relationship between the morphological and physiological effects on gingival microcirculation when preparing teeth, using the conventional dental turbine or ultrasonic method. Methodology The lower premolar teeth of beagle dogs were prepared along the gingival margin by using a dental turbine or ultrasonic wave instrument. Gingival vasculature changes were investigated using scanning electron microscopy for corrosion resin casts. Gingival blood flow at the preparation site was determined simultaneously by laser Doppler flowmetry. These assessments were performed immediately (Day 0), at 7 days and 30 days after tooth preparation. Results At day 0, in the turbine group, blood vessels were destroyed and some resin leaked. Furthermore, gingival blood flow at the site was significantly increased. In contrast, the ultrasonic group demonstrated nearly normal vasculature and gingival blood flow similar to the non-prepared group for 30 days after preparation. No significant alterations occurred in gingival circulation 30 days after either preparation; however, the turbine group revealed obvious morphological changes. Conclusions Based on multiple approach analyses, this study demonstrated that ultrasonic waves are useful for microvascular protection in tooth preparation. Compared with a dental turbine, ultrasonic wave instruments caused minimal damage to gingival microcirculation. Tooth preparation using ultrasonic wave instruments could be valuable for protecting periodontal tissue.


Subject(s)
Humans , Animals , Female , Dogs , Tooth Preparation/instrumentation , Ultrasonic Waves , Gingiva/blood supply , Microcirculation/physiology , Time Factors , Microscopy, Electron, Scanning , Clinical Protocols , Reproducibility of Results , Laser-Doppler Flowmetry/methods , Tooth Preparation/methods , Dental Instruments
2.
Article | IMSEAR | ID: sea-192315

ABSTRACT

Introduction: An array of factors control the success of endodontic surgery. One of them is the technique used to prepare the root end cavities which is conventionally being done with burs. In past decades, ultrasonic instruments have been introduced for the same. Studies comparing these instruments on root surface integrity are scarce. Thus, an in-vitro Scanning Electron Microscopy study was designed to evaluate the surface integrity of root end cavities prepared using conventional and piezoelectric devices. Methodology: Twelve single-rooted human intact mandibular premolar teeth were endodontically treated and included in the study. They were divided into two groups. In the first group, 3 mm root-end cavities were prepared using conventional retro preparation burs and in the second group, 3 mm root-end cavities were prepared using piezoelectric retro-tips. The specimens were coded for blind evaluation and analysed under scanning electron microscope at 100x, 500x and 1000x magnification for smear layer and debris. Gutmann's scoring criteria was followed to score the specimens. Statistical analysis was carried out using Shapiro Wilk test and the independent sample t-test was used to check mean differences between variables. Results: It was noted that significant statistical differences existed in mean debris and smear layer scores (p<0.001) between the two groups. In the piezoelectric group, significantly lower debris layer and smear layer was found, compared to the conventional bur group. Conclusion: Root-end cavities prepared using piezo retrotips produced cleaner, well-centered and more conservative surface with minimal debris & smear layer, compared to root-end cavities prepared using conventional burs.

SELECTION OF CITATIONS
SEARCH DETAIL